from anndata import AnnData
from cellrank import logging as logg
from cellrank.ul._docs import d
from cellrank.tl.kernels._mixins import ConnectivityMixin
from cellrank.tl.kernels._base_kernel import UnidirectionalKernel
__all__ = ("ConnectivityKernel",)
[docs]@d.dedent
class ConnectivityKernel(ConnectivityMixin, UnidirectionalKernel):
"""
Kernel which computes transition probabilities based on similarities among cells.
As a measure of similarity, we currently support:
- transcriptomic similarities, computed using e.g. :func:`scanpy.pp.neighbors`, see :cite:`wolf:18`.
- spatial similarities, computed using e.g. :func:`squidpy.gr.spatial_neighbors`, see :cite:`palla:21`.
The resulting transition matrix is symmetric and thus cannot be used to learn about the direction of the biological
process. To include this direction, consider combining with a velocity-derived transition matrix via
:class:`cellrank.kernels.VelocityKernel`.
%(density_correction)s
Parameters
----------
%(adata)s
conn_key
Key in :attr:`anndata.AnnData.obsp` where connectivity matrix describing cell-cell similarity is stored.
check_connectivity
Check whether the underlying kNN graph is connected.
"""
def __init__(
self,
adata: AnnData,
conn_key: str = "connectivities",
check_connectivity: bool = False,
):
super().__init__(
adata,
conn_key=conn_key,
check_connectivity=check_connectivity,
)
[docs] def compute_transition_matrix(
self, density_normalize: bool = True
) -> "ConnectivityKernel":
"""
Compute transition matrix based on transcriptomic similarity.
Uses symmetric, weighted kNN graph to compute symmetric transition matrix. The connectivities are computed
using :func:`scanpy.pp.neighbors`. Depending on the parameters used there, they can be UMAP connectivities or
gaussian-kernel-based connectivities with adaptive kernel width.
Parameters
----------
density_normalize
Whether or not to use the underlying kNN graph for density normalization.
Returns
-------
Self and updates :attr:`transition_matrix` and :attr:`params`.
"""
# fmt: off
start = logg.info(f"Computing transition matrix based on `adata.obsp[{self._conn_key!r}]`")
if self._reuse_cache({"dnorm": density_normalize, "key": self._conn_key}, time=start):
return self
self.transition_matrix = self._density_normalize(self._conn) if density_normalize else self._conn
logg.info(" Finish", time=start)
# fmt: on
return self