cellrank.external.kernels.StationaryOTKernel.compute_transition_matrix
- StationaryOTKernel.compute_transition_matrix(eps, dt, basis='X_pca', cost_norm_method=None, method='ent', tol=0.0, thresh=0.0, maxiter=5000, C=None, verbose=False, **kwargs)[source]
Compute transition matrix using stationary OT [Zhang et al., 2021].
- Parameters
eps (
float
) – Regularization parameter.dt (
float
) – Choice of the time step over which to fit the model.basis (
str
) – Key inanndata.AnnData.obsm
where the basis is stored.cost_norm_method (
Optional
[str
]) – Cost normalization method to use. Use “mean” to ensure mean(C) = 1 or refer toot.utils.cost_normalization()
for more information.method (
Literal
[‘ent’, ‘quad’, ‘unbal’]) –Choice of regularization. Valid options are:
’ent’ - entropy.
’quad’ - L2-norm.
’unbal’ - unbalanced transport (not yet implemented).
tol (
float
) – Relative tolerance for OT solver convergence.thresh (
float
) – Threshold for output transition probabilities.maxiter (
int
) – Maximum number of iterations for OT solver.C (
Optional
[ndarray
]) – Cost matrix for optimal transport problem.verbose (
bool
) – Detailed output on convergence of OT solver.kwargs (
Any
) – Additional keyword arguments.
- Return type
- Returns
cellrank.external.kernels.StationaryOTKernel
Makestransition_matrix
available.