cellrank.tl.kernels.ConnectivityKernel.compute_transition_matrix
- ConnectivityKernel.compute_transition_matrix(density_normalize=True)[source]
Compute transition matrix based on transcriptomic similarity.
Uses symmetric, weighted KNN graph to compute symmetric transition matrix. The connectivities are computed using
scanpy.pp.neighbors()
. Depending on the parameters used there, they can be UMAP connectivities or gaussian-kernel-based connectivities with adaptive kernel width.- Parameters
density_normalize (
bool
) – Whether or not to use the underlying KNN graph for density normalization.- Return type
- Returns
Self and updated
transition_matrix
.