Source code for

# -*- coding: utf-8 -*-
"""Heatmap module."""

import os
from math import fabs
from typing import Any, Dict, List, Tuple, Union, TypeVar, Optional, Sequence
from pathlib import Path
from collections import Iterable, defaultdict

import numpy as np
import pandas as pd
from pandas.api.types import is_categorical_dtype
from scipy.ndimage.filters import convolve

import matplotlib as mpl
import as cm
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
from matplotlib.ticker import FormatStrFormatter
from mpl_toolkits.axes_grid1.inset_locator import inset_axes

from cellrank import logging as logg
from cellrank.ul._docs import d, inject_docs
from import (
from import save_fig, _min_max_scale, _unique_order_preserving
from cellrank.ul._utils import _get_n_cores, valuedispatch, _check_collection
from import _create_categorical_colors
from import _DEFAULT_BACKEND, ModeEnum, AbsProbKey

_N_XTICKS = 10

AnnData = TypeVar("AnnData")
Cmap = TypeVar("Cmap")
Norm = TypeVar("Norm")
Ax = TypeVar("Ax")
Fig = TypeVar("Fig")

class HeatmapMode(ModeEnum):  # noqa
    GENES = "genes"
    LINEAGES = "lineages"

[docs]@d.dedent @inject_docs(m=HeatmapMode) def heatmap( adata: AnnData, model: _input_model_type, genes: Sequence[str], lineages: Optional[Union[str, Sequence[str]]] = None, backward: bool = False, mode: str = HeatmapMode.LINEAGES.s, time_key: str = "latent_time", time_range: Optional[Union[_time_range_type, List[_time_range_type]]] = None, callback: _callback_type = None, cluster_key: Optional[Union[str, Sequence[str]]] = None, show_absorption_probabilities: bool = False, cluster_genes: bool = False, keep_gene_order: bool = False, scale: bool = True, n_convolve: Optional[int] = 5, show_all_genes: bool = False, cbar: bool = True, lineage_height: float = 0.33, fontsize: Optional[float] = None, xlabel: Optional[str] = None, cmap: mcolors.ListedColormap = cm.viridis, dendrogram: bool = True, return_genes: bool = False, return_models: bool = False, n_jobs: Optional[int] = 1, backend: str = _DEFAULT_BACKEND, show_progress_bar: bool = True, figsize: Optional[Tuple[float, float]] = None, dpi: Optional[int] = None, save: Optional[Union[str, Path]] = None, **kwargs, ) -> Optional[ Union[Dict[str, pd.DataFrame], Tuple[_return_model_type, Dict[str, pd.DataFrame]]] ]: """ Plot a heatmap of smoothed gene expression along specified lineages. Parameters ---------- %(adata)s %(model)s %(genes)s lineages Names of the lineages for which to plot. If `None`, plot all lineages. %(backward)s mode Valid options are: - `{m.LINEAGES.s!r}` - group by ``genes`` for each lineage in ``lineages``. - `{m.GENES.s!r}` - group by ``lineages`` for each gene in ``genes``. time_key Key in ``adata.obs`` where the pseudotime is stored. %(time_ranges)s %(model_callback)s cluster_key Key(s) in ``adata.obs`` containing categorical observations to be plotted on top of the heatmap. Only available when ``mode={m.LINEAGES.s!r}``. show_absorption_probabilities Whether to also plot absorption probabilities alongside the smoothed expression. Only available when ``mode={m.LINEAGES.s!r}``. cluster_genes Whether to cluster genes using :func:`seaborn.clustermap` when ``mode='lineages'``. keep_gene_order Whether to keep the gene order for later lineages after the first was sorted. Only available when ``cluster_genes=False`` and ``mode={m.LINEAGES.s!r}``. scale Whether to normalize the gene expression `0-1` range. n_convolve Size of the convolution window when smoothing absorption probabilities. show_all_genes Whether to show all genes on y-axis. cbar Whether to show the colorbar. lineage_height Height of a bar when ``mode={m.GENES.s!r}``. fontsize Size of the title's font. xlabel Label on the x-axis. If `None`, it is determined based on ``time_key``. cmap Colormap to use when visualizing the smoothed expression. dendrogram Whether to show dendrogram when ``cluster_genes=True``. return_genes Whether to return the sorted or clustered genes. Only available when ``mode={m.LINEAGES.s!r}``. %(return_models)s %(parallel)s %(plotting)s **kwargs Keyword arguments for :meth:`cellrank.ul.models.BaseModel.prepare`. Returns ------- %(plots_or_returns_models)s :class:`pandas.DataFrame` If ``return_genes=True`` and ``mode={m.LINEAGES.s!r}``, returns :class:`pandas.DataFrame` containing the clustered or sorted genes. """ import seaborn as sns def find_indices(series: pd.Series, values) -> Tuple[Any]: def find_nearest(array: np.ndarray, value: float) -> int: ix = np.searchsorted(array, value, side="left") if ix > 0 and ( ix == len(array) or fabs(value - array[ix - 1]) < fabs(value - array[ix]) ): return ix - 1 return ix series = series[np.argsort(series.values)] return tuple(series[[find_nearest(series.values, v) for v in values]].index) def subset_lineage(lname: str, rng: np.ndarray) -> np.ndarray: time_series = adata.obs[time_key] ixs = find_indices(time_series, rng) lin = adata[ixs, :].obsm[lineage_key][lname] lin = lin.X.copy().squeeze() if n_convolve is not None: lin = convolve(lin, np.ones(n_convolve) / n_convolve, mode="nearest") return lin def create_col_colors(lname: str, rng: np.ndarray) -> Tuple[np.ndarray, Cmap, Norm]: color = adata.obsm[lineage_key][lname].colors[0] lin = subset_lineage(lname, rng) h, _, v = mcolors.rgb_to_hsv(mcolors.to_rgb(color)) end_color = mcolors.hsv_to_rgb([h, 1, v]) lineage_cmap = mcolors.LinearSegmentedColormap.from_list( "lineage_cmap", ["#ffffff", end_color], N=len(rng) ) norm = mcolors.Normalize(vmin=np.min(lin), vmax=np.max(lin)) scalar_map = cm.ScalarMappable(cmap=lineage_cmap, norm=norm) return ( np.array([mcolors.to_hex(c) for c in scalar_map.to_rgba(lin)]), lineage_cmap, norm, ) def create_col_categorical_color(cluster_key: str, rng: np.ndarray) -> np.ndarray: if not is_categorical_dtype(adata.obs[cluster_key]): raise TypeError( f"Expected `adata.obs[{cluster_key!r}]` to be categorical, " f"found `{adata.obs[cluster_key]!r}`." ) color_key = f"{cluster_key}_colors" if color_key not in adata.uns: logg.warning( f"Color key `{color_key!r}` not found in `adata.uns`. Creating new colors" ) colors = _create_categorical_colors( len(adata.obs[cluster_key].cat.categories) ) adata.uns[color_key] = colors else: colors = adata.uns[color_key] time_series = adata.obs[time_key] ixs = find_indices(time_series, rng) mapper = dict(zip(adata.obs[cluster_key].cat.categories, colors)) return np.array( [mcolors.to_hex(mapper[v]) for v in adata[ixs, :].obs[cluster_key].values] ) def create_cbar( ax, x_delta: float, cmap: Cmap, norm: Norm, label: Optional[str] = None, ) -> Ax: cax = inset_axes( ax, width="1%", height="100%", loc="lower right", bbox_to_anchor=(x_delta, 0, 1, 1), bbox_transform=ax.transAxes, ) _ = mpl.colorbar.ColorbarBase( cax, cmap=cmap, norm=norm, label=label, ticks=np.linspace(norm.vmin, norm.vmax, 5), ) return cax @valuedispatch def _plot_heatmap(_mode: HeatmapMode) -> Fig: pass @_plot_heatmap.register(HeatmapMode.GENES) def _() -> Tuple[Fig, None]: def color_fill_rec(ax, xs, y1, y2, colors=None, cmap=cmap, **kwargs) -> None: colors = colors if cmap is None else cmap(colors) x = 0 for i, (color, x, y1, y2) in enumerate(zip(colors, xs, y1, y2)): dx = (xs[i + 1] - xs[i]) if i < len(x) else (xs[-1] - xs[-2]) ax.add_patch( plt.Rectangle((x, y1), dx, y2 - y1, color=color, ec=color, **kwargs) ) ax.plot(x, y2, lw=0) fig, axes = plt.subplots( nrows=len(genes) + show_absorption_probabilities, figsize=(12, len(genes) + len(lineages) * lineage_height) if figsize is None else figsize, dpi=dpi, constrained_layout=True, ) if not isinstance(axes, Iterable): axes = [axes] axes = np.ravel(axes) if show_absorption_probabilities: data["absorption probability"] = data[next(iter(data.keys()))] for ax, (gene, models) in zip(axes, data.items()): if scale: vmin, vmax = 0, 1 else: c = np.array([m.y_test for m in models.values()]) vmin, vmax = np.nanmin(c), np.nanmax(c) norm = mcolors.Normalize(vmin=vmin, vmax=vmax) ix = 0 ys = [ix] if gene == "absorption probability": norm = mcolors.Normalize(vmin=0, vmax=1) for ln, x in ((ln, m.x_test) for ln, m in models.items()): y = np.ones_like(x) c = subset_lineage(ln, x.squeeze()) color_fill_rec( ax, x, y * ix, y * (ix + lineage_height), colors=norm(c) ) ix += lineage_height ys.append(ix) else: for x, c in ((m.x_test, m.y_test) for m in models.values()): y = np.ones_like(x) c = _min_max_scale(c) if scale else c color_fill_rec( ax, x, y * ix, y * (ix + lineage_height), colors=norm(c) ) ix += lineage_height ys.append(ix) xs = np.array([m.x_test for m in models.values()]) x_min, x_max = np.min(xs), np.max(xs) ax.set_xticks(np.linspace(x_min, x_max, _N_XTICKS)) ax.set_yticks(np.array(ys[:-1]) + lineage_height / 2) ax.spines["left"].set_position( ("data", 0) ) # move the left spine to the rectangles to get nicer yticks ax.set_yticklabels(models.keys(), ha="right") ax.set_title(gene, fontdict={"fontsize": fontsize}) ax.set_ylabel("lineage") for pos in ["top", "bottom", "left", "right"]: ax.spines[pos].set_visible(False) if cbar: cax, _ = mpl.colorbar.make_axes(ax) _ = mpl.colorbar.ColorbarBase( cax, ticks=np.linspace(vmin, vmax, 5), norm=norm, cmap=cmap, label="value" if gene == "absorption probability" else "scaled expression" if scale else "expression", ) ax.tick_params( top=False, bottom=False, left=True, right=False, labelleft=True, labelbottom=False, ) ax.xaxis.set_major_formatter(FormatStrFormatter("%.3f")) ax.tick_params( top=False, bottom=True, left=True, right=False, labelleft=True, labelbottom=True, ) ax.set_xlabel(xlabel) return fig, None @_plot_heatmap.register(HeatmapMode.LINEAGES) def _() -> Tuple[List[Fig], pd.DataFrame]: data_t = defaultdict(dict) # transpose for gene, lns in data.items(): for ln, y in lns.items(): data_t[ln][gene] = y figs = [] gene_order = None sorted_genes = pd.DataFrame() if return_genes else None for lname, models in data_t.items(): xs = np.array([m.x_test for m in models.values()]) x_min, x_max = np.nanmin(xs), np.nanmax(xs) df = pd.DataFrame([m.y_test for m in models.values()], index=models.keys()) = "genes" if not cluster_genes: if gene_order is not None: df = df.loc[gene_order] else: max_sort = np.argsort( np.argmax(df.apply(_min_max_scale, axis=1).values, axis=1) ) df = df.iloc[max_sort, :] if keep_gene_order: gene_order = df.index cat_colors = None if cluster_key is not None: cat_colors = np.stack( [ create_col_categorical_color( c, np.linspace(x_min, x_max, df.shape[1]) ) for c in cluster_key ], axis=0, ) if show_absorption_probabilities: col_colors, col_cmap, col_norm = create_col_colors( lname, np.linspace(x_min, x_max, df.shape[1]) ) if cat_colors is not None: col_colors = np.vstack([cat_colors, col_colors[None, :]]) else: col_colors, col_cmap, col_norm = cat_colors, None, None row_cluster = cluster_genes and df.shape[0] > 1 show_clust = row_cluster and dendrogram g = sns.clustermap( df, cmap=cmap, figsize=(10, min(len(genes) / 8 + 1, 10)) if figsize is None else figsize, xticklabels=False, row_cluster=row_cluster, col_colors=col_colors, colors_ratio=0, col_cluster=False, cbar_pos=None, yticklabels=show_all_genes or "auto", standard_scale=0 if scale else None, ) if cbar: cax = create_cbar( g.ax_heatmap, 0.1, cmap=cmap, norm=mcolors.Normalize( vmin=0 if scale else np.min(df.values), vmax=1 if scale else np.max(df.values), ), label="scaled expression" if scale else "expression", ) g.fig.add_axes(cax) if col_cmap is not None and col_norm is not None: cax = create_cbar( g.ax_heatmap, 0.25, cmap=col_cmap, norm=col_norm, label="absorption probability", ) g.fig.add_axes(cax) if g.ax_col_colors: main_bbox = _get_ax_bbox(g.fig, g.ax_heatmap) n_bars = show_absorption_probabilities + ( len(cluster_key) if cluster_key is not None else 0 ) _set_ax_height_to_cm( g.fig, g.ax_col_colors, height=min( 5, max(n_bars * main_bbox.height / len(df), 0.25 * n_bars) ), ) g.ax_col_colors.set_title(lname, fontdict={"fontsize": fontsize}) else: g.ax_heatmap.set_title(lname, fontdict={"fontsize": fontsize}) g.ax_col_dendrogram.set_visible(False) # gets rid of top free space g.ax_heatmap.yaxis.tick_left() g.ax_heatmap.yaxis.set_label_position("right") g.ax_heatmap.set_xlabel(xlabel) g.ax_heatmap.set_xticks(np.linspace(0, len(df.columns), _N_XTICKS)) g.ax_heatmap.set_xticklabels( list(map(lambda n: round(n, 3), np.linspace(x_min, x_max, _N_XTICKS))) ) if show_clust: # robustly show dendrogram, because gene names can be long g.ax_row_dendrogram.set_visible(True) dendro_box = g.ax_row_dendrogram.get_position() pad = 0.005 bb = g.ax_heatmap.yaxis.get_tightbbox( g.fig.canvas.get_renderer() ).transformed(g.fig.transFigure.inverted()) dendro_box.x0 = bb.x0 - dendro_box.width - pad dendro_box.x1 = bb.x0 - pad g.ax_row_dendrogram.set_position(dendro_box) else: g.ax_row_dendrogram.set_visible(False) if return_genes: sorted_genes[lname] = ( df.index[g.dendrogram_row.reordered_ind] if hasattr(g, "dendrogram_row") and g.dendrogram_row is not None else df.index ) figs.append(g) return figs, sorted_genes mode = HeatmapMode(mode) lineage_key = str(AbsProbKey.BACKWARD if backward else AbsProbKey.FORWARD) if lineage_key not in adata.obsm: raise KeyError(f"Lineages key `{lineage_key!r}` not found in `adata.obsm`.") if lineages is None: lineages = adata.obsm[lineage_key].names elif isinstance(lineages, str): lineages = [lineages] lineages = _unique_order_preserving(lineages) _ = adata.obsm[lineage_key][lineages] if cluster_key is not None: if isinstance(cluster_key, str): cluster_key = [cluster_key] cluster_key = _unique_order_preserving(cluster_key) if isinstance(genes, str): genes = [genes] genes = _unique_order_preserving(genes) _check_collection(adata, genes, "var_names", use_raw=kwargs.get("use_raw", False)) kwargs["backward"] = backward kwargs["time_key"] = time_key models = _create_models(model, genes, lineages) all_models, data, genes, lineages = _fit_bulk( models, _create_callbacks(adata, callback, genes, lineages, **kwargs), genes, lineages, time_range, return_models=True, # always return (better error messages) filter_all_failed=True, parallel_kwargs={ "show_progress_bar": show_progress_bar, "n_jobs": _get_n_cores(n_jobs, len(genes)), "backend": _get_backend(models, backend), }, **kwargs, ) xlabel = time_key if xlabel is None else xlabel logg.debug(f"Plotting `{mode.s!r}` heatmap") fig, genes = _plot_heatmap(mode) if save is not None and fig is not None: if not isinstance(fig, Iterable): save_fig(fig, save) elif len(fig) == 1: save_fig(fig[0], save) else: for ln, f in zip(lineages, fig): save_fig(f, os.path.join(save, f"lineage_{ln}")) if return_genes and mode == HeatmapMode.LINEAGES: return (all_models, genes) if return_models else genes elif return_models: return all_models
def _get_ax_bbox(fig: Fig, ax: Ax): return ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) def _set_ax_height_to_cm(fig: Fig, ax: Ax, height: float) -> None: from mpl_toolkits.axes_grid1 import Size, Divider height /= 2.54 # cm to inches bbox = _get_ax_bbox(fig, ax) hori = [Size.Fixed(bbox.x0), Size.Fixed(bbox.width), Size.Fixed(bbox.x1)] vert = [Size.Fixed(bbox.y0), Size.Fixed(height), Size.Fixed(bbox.y1)] divider = Divider(fig, (0.0, 0.0, 1.0, 1.0), hori, vert, aspect=False) ax.set_axes_locator(divider.new_locator(nx=1, ny=1))