cellrank.pl.gene_trends¶
- cellrank.pl.gene_trends(adata, model, genes, time_key, lineages=None, backward=False, data_key='X', time_range=None, transpose=False, callback=None, conf_int=True, same_plot=False, hide_cells=False, perc=None, lineage_cmap=None, fate_prob_cmap=<matplotlib.colors.ListedColormap object>, cell_color=None, cell_alpha=0.6, lineage_alpha=0.2, size=15, lw=2, cbar=True, margins=0.015, sharex=None, sharey=None, gene_as_title=None, legend_loc='best', obs_legend_loc='best', ncols=2, suptitle=None, return_models=False, n_jobs=1, backend='loky', show_progress_bar=True, figsize=None, dpi=None, save=None, return_figure=False, plot_kwargs=mappingproxy({}), **kwargs)[source]¶
Plot gene expression trends along lineages.
See also
See Visualizing and Clustering Gene Expression Trends on how to visualize the gene trends.
Each lineage is defined via its lineage weights. This function accepts any model based off
BaseModel
to fit gene expression, where we take the lineage weights into account in the loss function.- Parameters:
adata (
AnnData
) – Annotated data object.model (
Union
[BaseModel
,Mapping
[str
,Mapping
[str
,BaseModel
]]]) – Model based onBaseModel
to fit. If adict
, gene and lineage specific models can be specified. Use'*'
to indicate all genes or lineages, for example{'gene_1': {'*': ...}, 'gene_2': {'lineage_1': ..., '*': ...}}
.lineages (
Union
[str
,Sequence
[str
],None
]) – Names of the lineages to plot. IfNone
, plot all lineages.backward (
bool
) – Direction of the process.data_key (
str
) – Key inlayers
or'X'
forX
where the data is stored.time_range (
Union
[float
,tuple
[Optional
[float
],Optional
[float
]],None
,list
[Union
[float
,tuple
[Optional
[float
],Optional
[float
]],None
]]]) –Specify start and end times:
tuple
- it specifies the minimum and maximum pseudotime. Both values can beNone
, in which case the minimum is the earliest pseudotime and the maximum is automatically determined.float
- it specifies the maximum pseudotime.
This can also be specified on per-lineage basis.
transpose (
bool
) – Ifsame_plot = True
, group the trends bylineages
instead ofgenes
. This forceshide_cells = True
. Ifsame_plot = False
, showlineages
in rows andgenes
in columns.callback (
Union
[Callable
,Mapping
[str
,Mapping
[str
,Callable
]],None
]) – Function which takes aBaseModel
and some keyword arguments forprepare()
and returns the prepared model. Can be specified in gene- and lineage-specific manner, similarly to themodel
.conf_int (
Union
[bool
,float
]) – Whether to compute and show confidence interval. If themodel
isGAMR
, it can also specify the confidence level, the default is \(0.95\).same_plot (
bool
) – Whether to plot all lineages for each gene in the same plot.perc (
Union
[tuple
[float
,float
],Sequence
[tuple
[float
,float
]],None
]) – Percentile for colors. Valid values are in \([0, 100]\). This can improve visualization. Can be specified individually for each lineage.lineage_cmap (
Optional
[ListedColormap
]) – Categorical colormap to use when coloring in the lineages. IfNone
andsame_plot = True
, use the corresponding colors inuns
, otherwise use'black'
.fate_prob_cmap (
ListedColormap
) – Continuous colormap to use when visualizing the fate probabilities for each lineage. Only used whensame_plot = False
.cell_color (
Optional
[str
]) – Key inobs
orvar_names
used for coloring the cells.cell_alpha (
float
) – Alpha channel for cells.lineage_alpha (
float
) – Alpha channel for lineage confidence intervals.size (
float
) – Size of the points.lw (
float
) – Line width of the smoothed values.cbar (
bool
) – Whether to show colorbar. Always shown when percentiles for lineages differ. Only used whensame_plot = False
.margins (
float
) – Margins around the plot.sharex (
Union
[str
,bool
,None
]) – Whether to share x-axis. Valid options are'row'
,'col'
or'none'
.sharey (
Union
[str
,bool
,None
]) – Whether to share y-axis. Valid options are'row'`, ``'col'
or'none'
.gene_as_title (
Optional
[bool
]) – Whether to show gene names as titles instead on y-axis.legend_loc (
Optional
[str
]) – Location of the legend displaying lineages. Only used whensame_plot = True
.obs_legend_loc (
Optional
[str
]) – Location of the legend whencell_color
corresponds to a categorical variable.ncols (
int
) – Number of columns of the plot when plotting multiple genes. Only used whensame_plot = True
.return_figure (
bool
) – Whether to return the figure object.return_models (
bool
) – IfTrue
, return the fitted models for each gene ingenes
and lineage inlineages
.show_progress_bar (
bool
) – Whether to show a progress bar. Disabling it may slightly improve performance.n_jobs (
Optional
[int
]) – Number of parallel jobs. If -1, use all available cores. IfNone
or 1, the execution is sequential.backend (
Literal
['loky'
,'multiprocessing'
,'threading'
]) – Which backend to use for parallelization. SeeParallel
for valid options.figsize (
Optional
[tuple
[float
,float
]]) – Size of the figure.save (
Union
[Path
,str
,None
]) – Filename where to save the plot.plot_kwargs (
Mapping
[str
,Any
]) – Keyword arguments for theplot()
.
- Return type:
- Returns:
: If
return_models = False
, just plots the figure and optionally saves it based onsave
. Otherwise returns the fitted models as{'gene_1': {'lineage_1': <model_11>, ...}, ...}
. Models which have failed will be instances ofcellrank.models.FailedModel
.