cellrank.models.GAMR¶
- class cellrank.models.GAMR(adata, n_knots=5, distribution='gaussian', basis='cr', knotlocs='auto', offset='default', smoothing_penalty=1.0, **kwargs)[source]¶
Wrapper around R’s mgcv package for fitting GAMs.
- Parameters:
adata (
AnnData
) – Annotated data object.n_knots (
int
) – Number of knots.distribution (
str
) – Distribution family in rpy2.robjects.r, such as'gaussian'
or'nb'
for negative binomial. If'nb'
, raw count data inraw
is always used.basis (
str
) – Basis for the smoothing term. See here for valid options.knotlocs (
Literal
['auto'
,'density'
]) –Position of the knots. Can be one of the following:
'auto'
- let mgcv handle the knot positions.'density'
- position the knots based on the density of the pseudotime.
offset (
Union
[ndarray
,Literal
['default'
],None
]) – Offset term for the GAM. Only available whendistribution='nb'
. If ‘default’, it is calculated according to [Robinson and Oshlack, 2010]. The values are saved inadata.obs['cellrank_offset']
. IfNone
, no offset is used.smoothing_penalty (
float
) – Penalty for the smoothing term. The larger the value, the smoother the fitted curve.kwargs (
Any
) – Keyword arguments for gam control.
Attributes table¶
Annotated data object. |
|
Array of shape |
|
Underlying model. |
|
Whether the model is prepared for fitting. |
|
Number of cells in |
|
Filtered weights of shape |
|
Unfiltered weights of shape |
|
Filtered independent variables of shape |
|
Unfiltered independent variables of shape |
|
Filtered independent variables used when calculating default confidence interval, usually same as |
|
Independent variables of shape |
|
Filtered dependent variables of shape |
|
Unfiltered dependent variables of shape |
|
Filtered dependent variables used when calculating default confidence interval, usually same as |
|
Prediction values of shape |
Methods table¶
|
Calculate the confidence interval. |
|
Return a copy of self. |
|
Calculate the confidence interval, if the underlying |
|
Fit the model. |
|
Plot the smoothed gene expression. |
|
Run the prediction. |
|
Prepare the model to be ready for fitting. |
|
De-serialize self from a file. |
|
Serialize self to a file using |
Attributes¶
adata¶
- GAMR.adata¶
Annotated data object.
conf_int¶
- GAMR.conf_int¶
Array of shape
(n_samples, 2)
containing the lower and upper bound of the confidence interval.
model¶
- GAMR.model¶
Underlying model.
prepared¶
- GAMR.prepared¶
Whether the model is prepared for fitting.
shape¶
w¶
- GAMR.w¶
Filtered weights of shape
(n_filtered_cells,)
used for fitting.
w_all¶
- GAMR.w_all¶
Unfiltered weights of shape
(n_cells,)
.
x¶
- GAMR.x¶
Filtered independent variables of shape
(n_filtered_cells, 1)
used for fitting.
x_all¶
- GAMR.x_all¶
Unfiltered independent variables of shape
(n_cells, 1)
.
x_hat¶
x_test¶
- GAMR.x_test¶
Independent variables of shape
(n_samples, 1)
used for prediction.
y¶
- GAMR.y¶
Filtered dependent variables of shape
(n_filtered_cells, 1)
used for fitting.
y_all¶
- GAMR.y_all¶
Unfiltered dependent variables of shape
(n_cells, 1)
.
y_hat¶
y_test¶
Methods¶
confidence_interval¶
copy¶
default_confidence_interval¶
- GAMR.default_confidence_interval(x_test=None, **kwargs)¶
Calculate the confidence interval, if the underlying
model
has no method for it.This formula is taken from [DeSalvo, 1970], eq. 5.
- Parameters:
- Return type:
- Returns:
: Returns self and updates the following fields:
Also updates the following fields:
fit¶
- GAMR.fit(x=None, y=None, w=None, **kwargs)[source]¶
Fit the model.
- Parameters:
x (
Optional
[ndarray
]) – Independent variables, array of shape(n_samples, 1)
. IfNone
, usex
.y (
Optional
[ndarray
]) – Dependent variables, array of shape(n_samples, 1)
. IfNone
, usey
.w (
Optional
[ndarray
]) – Optional weights ofx
, array of shape(n_samples,)
. IfNone
, usew
.kwargs (
Any
) – Keyword arguments for underlyingmodel
’s fitting function.
- Return type:
- Returns:
: Fits the model and returns self. Updates the following fields by filtering out \(0\) weights
w
:
plot¶
- GAMR.plot(figsize=(8, 5), same_plot=False, hide_cells=False, perc=None, fate_prob_cmap=<matplotlib.colors.ListedColormap object>, cell_color=None, lineage_color='black', alpha=0.8, lineage_alpha=0.2, title=None, size=15, lw=2, cbar=True, margins=0.015, xlabel='pseudotime', ylabel='expression', conf_int=True, lineage_probability=False, lineage_probability_conf_int=False, lineage_probability_color=None, obs_legend_loc='best', dpi=None, fig=None, ax=None, return_fig=False, save=None, **kwargs)¶
Plot the smoothed gene expression.
- Parameters:
same_plot (
bool
) – Whether to plot all trends in the same plot.hide_cells (
bool
) – Whether to hide the cells.perc (
Optional
[tuple
[float
,float
]]) – Percentile by which to clip the fate probabilities.fate_prob_cmap (
ListedColormap
) – Colormap to use when coloring in the fate probabilities.cell_color (
Optional
[str
]) – Key inobs
orvar_names
used for coloring the cells.lineage_color (
str
) – Color for the lineage.alpha (
float
) – Alpha value in \([0, 1]\) for the transparency of cells.lineage_alpha (
float
) – Alpha value in \([0, 1]\) for the transparency lineage confidence intervals.size (
int
) – Size of the points.lw (
float
) – Line width for the smoothed values.cbar (
bool
) – Whether to show the colorbar.margins (
float
) – Margins around the plot.xlabel (
str
) – Label on the x-axis.ylabel (
str
) – Label on the y-axis.conf_int (
bool
) – Whether to show the confidence interval.lineage_probability (
bool
) – Whether to show smoothed lineage probability as a dashed line. Note that this will require 1 additional model fit.lineage_probability_conf_int (
Union
[bool
,float
]) – Whether to compute and show smoothed lineage probability confidence interval.lineage_probability_color (
Optional
[str
]) – Color to use when plotting the smoothedlineage_probability
. IfNone
, it’s the same aslineage_color
. Only used whenshow_lineage_probability = True
.obs_legend_loc (
Optional
[str
]) – Location of the legend whencell_color
corresponds to a categorical variable.fig (
Optional
[Figure
]) – Figure to use. IfNone
, create a new one.save (
Optional
[str
]) – Filename where to save the plot. IfNone
, just shows the plots.
- Return type:
- Returns:
: Nothing, just plots the figure. Optionally saves it based on
save
.
predict¶
- GAMR.predict(x_test=None, key_added='_x_test', level=None, **kwargs)[source]¶
Run the prediction.
This method can also compute the confidence interval.
- Parameters:
x_test (
Optional
[ndarray
]) – Array of shape(n_samples,)
used for prediction. IfNone
, usex_test
.key_added (
str
) – Attribute name where to save thex_test
for later use. IfNone
, don’t save it.kwargs – Keyword arguments for underlying
model
’s prediction method.level (
Optional
[float
]) – Confidence level for confidence interval calculation. IfNone
, don’t compute the confidence interval. Must be in \([0, 1]\).
- Return type:
- Returns:
: Returns and updates the following fields:
prepare¶
- GAMR.prepare(*args, **kwargs)[source]¶
Prepare the model to be ready for fitting.
This also removes the zero and negative weights and prepares the design matrix.
- Parameters:
gene – Gene in
var_names
.lineage – Name of the lineage. If
None
, all weights will be set to \(1\).time_key – Key in
obs
where the pseudotime is stored.backward – Direction of the process.
time_range –
Specify start and end times:
data_key – Key in
layers
or'X'
forX
. Ifuse_raw = True
, it’s always set to'X'
.use_raw – Whether to access
raw
.threshold – Consider only cells with weights >
threshold
when estimating the test endpoint. IfNone
, use the median of the weights.weight_threshold – Set all weights below
weight_threshold
toweight_threshold
if afloat
, or to the second value, if atuple
.filter_cells – Filter out all cells with expression values lower than this threshold.
n_test_points – Number of test points. If
None
, use the original points based onthreshold
.args (Any)
kwargs (Any)
- Return type:
- Returns:
: Nothing, just updates the following fields:
read¶
- static GAMR.read(fname, adata=None, copy=False)¶
De-serialize self from a file.
- Parameters:
fname (
Union
[str
,Path
]) – Path from which to read the object.adata (
Optional
[AnnData
]) –AnnData
object to assign to the saved object. Only used when the saved object hasadata
and it was saved without it.copy (
bool
) – Whether to copyadata
before assigning it. Ifadata
is a view, it is always copied.
- Return type:
IOMixin
- Returns:
: The de-serialized object.