cellrank.models.SKLearnModel¶
- class cellrank.models.SKLearnModel(adata, model, weight_name=None, ignore_raise=False)[source]¶
Wrapper around
BaseEstimator
.- Parameters:
adata (
AnnData
) – Annotated data object.model (
BaseEstimator
) – Instance of the underlyingsklearn
estimator, such asSVR
.weight_name (
Optional
[str
]) – Name of the weight argument when fitting the model. IfNone
, to determine it automatically. If an emptystr
, no weights will be used.ignore_raise (
bool
) – Do not raise an exception if weight argument is not found when fitting themodel
. This is useful in case when the weight argument is passed in the**kwargs
and cannot be determined from signature.
Attributes table¶
Annotated data object. |
|
Array of shape |
|
The underlying |
|
Whether the model is prepared for fitting. |
|
Number of cells in |
|
Filtered weights of shape |
|
Unfiltered weights of shape |
|
Filtered independent variables of shape |
|
Unfiltered independent variables of shape |
|
Filtered independent variables used when calculating default confidence interval, usually same as |
|
Independent variables of shape |
|
Filtered dependent variables of shape |
|
Unfiltered dependent variables of shape |
|
Filtered dependent variables used when calculating default confidence interval, usually same as |
|
Prediction values of shape |
Methods table¶
|
Calculate the confidence interval. |
|
Return a copy of self. |
|
Calculate the confidence interval, if the underlying |
|
Fit the model. |
|
Plot the smoothed gene expression. |
|
Run the prediction. |
|
Prepare the model to be ready for fitting. |
|
De-serialize self from a file. |
|
Serialize self to a file using |
Attributes¶
adata¶
- SKLearnModel.adata¶
Annotated data object.
conf_int¶
- SKLearnModel.conf_int¶
Array of shape
(n_samples, 2)
containing the lower and upper bound of the confidence interval.
model¶
- SKLearnModel.model¶
The underlying
BaseEstimator
.
prepared¶
- SKLearnModel.prepared¶
Whether the model is prepared for fitting.
shape¶
w¶
- SKLearnModel.w¶
Filtered weights of shape
(n_filtered_cells,)
used for fitting.
w_all¶
- SKLearnModel.w_all¶
Unfiltered weights of shape
(n_cells,)
.
x¶
- SKLearnModel.x¶
Filtered independent variables of shape
(n_filtered_cells, 1)
used for fitting.
x_all¶
- SKLearnModel.x_all¶
Unfiltered independent variables of shape
(n_cells, 1)
.
x_hat¶
x_test¶
- SKLearnModel.x_test¶
Independent variables of shape
(n_samples, 1)
used for prediction.
y¶
- SKLearnModel.y¶
Filtered dependent variables of shape
(n_filtered_cells, 1)
used for fitting.
y_all¶
- SKLearnModel.y_all¶
Unfiltered dependent variables of shape
(n_cells, 1)
.
y_hat¶
y_test¶
Methods¶
confidence_interval¶
- SKLearnModel.confidence_interval(x_test=None, **kwargs)[source]¶
Calculate the confidence interval.
Use
default_confidence_interval()
function if underlyingmodel
has no method for confidence interval calculation.- Parameters:
- Return type:
- Returns:
: Returns self and updates the following fields:
copy¶
default_confidence_interval¶
- SKLearnModel.default_confidence_interval(x_test=None, **kwargs)¶
Calculate the confidence interval, if the underlying
model
has no method for it.This formula is taken from [DeSalvo, 1970], eq. 5.
- Parameters:
- Return type:
- Returns:
: Returns self and updates the following fields:
Also updates the following fields:
fit¶
- SKLearnModel.fit(x=None, y=None, w=None, **kwargs)[source]¶
Fit the model.
- Parameters:
x (
Optional
[ndarray
]) – Independent variables, array of shape(n_samples, 1)
. IfNone
, usex
.y (
Optional
[ndarray
]) – Dependent variables, array of shape(n_samples, 1)
. IfNone
, usey
.w (
Optional
[ndarray
]) – Optional weights ofx
, array of shape(n_samples,)
. IfNone
, usew
.kwargs (
Any
) – Keyword arguments for underlyingmodel
’s fitting function.
- Return type:
- Returns:
: Fits the model and returns self.
plot¶
- SKLearnModel.plot(figsize=(8, 5), same_plot=False, hide_cells=False, perc=None, fate_prob_cmap=<matplotlib.colors.ListedColormap object>, cell_color=None, lineage_color='black', alpha=0.8, lineage_alpha=0.2, title=None, size=15, lw=2, cbar=True, margins=0.015, xlabel='pseudotime', ylabel='expression', conf_int=True, lineage_probability=False, lineage_probability_conf_int=False, lineage_probability_color=None, obs_legend_loc='best', dpi=None, fig=None, ax=None, return_fig=False, save=None, **kwargs)¶
Plot the smoothed gene expression.
- Parameters:
same_plot (
bool
) – Whether to plot all trends in the same plot.hide_cells (
bool
) – Whether to hide the cells.perc (
Optional
[tuple
[float
,float
]]) – Percentile by which to clip the fate probabilities.fate_prob_cmap (
ListedColormap
) – Colormap to use when coloring in the fate probabilities.cell_color (
Optional
[str
]) – Key inobs
orvar_names
used for coloring the cells.lineage_color (
str
) – Color for the lineage.alpha (
float
) – Alpha value in \([0, 1]\) for the transparency of cells.lineage_alpha (
float
) – Alpha value in \([0, 1]\) for the transparency lineage confidence intervals.size (
int
) – Size of the points.lw (
float
) – Line width for the smoothed values.cbar (
bool
) – Whether to show the colorbar.margins (
float
) – Margins around the plot.xlabel (
str
) – Label on the x-axis.ylabel (
str
) – Label on the y-axis.conf_int (
bool
) – Whether to show the confidence interval.lineage_probability (
bool
) – Whether to show smoothed lineage probability as a dashed line. Note that this will require 1 additional model fit.lineage_probability_conf_int (
Union
[bool
,float
]) – Whether to compute and show smoothed lineage probability confidence interval.lineage_probability_color (
Optional
[str
]) – Color to use when plotting the smoothedlineage_probability
. IfNone
, it’s the same aslineage_color
. Only used whenshow_lineage_probability = True
.obs_legend_loc (
Optional
[str
]) – Location of the legend whencell_color
corresponds to a categorical variable.fig (
Optional
[Figure
]) – Figure to use. IfNone
, create a new one.save (
Optional
[str
]) – Filename where to save the plot. IfNone
, just shows the plots.
- Return type:
- Returns:
: Nothing, just plots the figure. Optionally saves it based on
save
.
predict¶
prepare¶
- SKLearnModel.prepare(gene, lineage, time_key, backward=False, time_range=None, data_key='X', use_raw=False, threshold=None, weight_threshold=(0.01, 0.01), filter_cells=None, n_test_points=200)¶
Prepare the model to be ready for fitting.
- Parameters:
lineage (
Optional
[str
]) – Name of the lineage. IfNone
, all weights will be set to \(1\).backward (
bool
) – Direction of the process.time_range (
Union
[float
,tuple
[float
,float
],None
]) –Specify start and end times:
data_key (
Optional
[str
]) – Key inlayers
or'X'
forX
. Ifuse_raw = True
, it’s always set to'X'
.threshold (
Optional
[float
]) – Consider only cells with weights >threshold
when estimating the test endpoint. IfNone
, use the median of the weights.weight_threshold (
Union
[float
,tuple
[float
,float
]]) – Set all weights belowweight_threshold
toweight_threshold
if afloat
, or to the second value, if atuple
.filter_cells (
Optional
[float
]) – Filter out all cells with expression values lower than this threshold.n_test_points (
int
) – Number of test points. IfNone
, use the original points based onthreshold
.
- Return type:
- Returns:
: Nothing, just updates the following fields:
x
- Filtered independent variables of shape(n_filtered_cells, 1)
used for fitting.y
- Filtered dependent variables of shape(n_filtered_cells, 1)
used for fitting.w
- Filtered weights of shape(n_filtered_cells,)
used for fitting.x_all
- Unfiltered independent variables of shape(n_cells, 1)
.y_all
- Unfiltered dependent variables of shape(n_cells, 1)
.w_all
- Unfiltered weights of shape(n_cells,)
.x_test
- Independent variables of shape(n_samples, 1)
used for prediction.prepared
- Whether the model is prepared for fitting.
read¶
- static SKLearnModel.read(fname, adata=None, copy=False)¶
De-serialize self from a file.
- Parameters:
fname (
Union
[str
,Path
]) – Path from which to read the object.adata (
Optional
[AnnData
]) –AnnData
object to assign to the saved object. Only used when the saved object hasadata
and it was saved without it.copy (
bool
) – Whether to copyadata
before assigning it. Ifadata
is a view, it is always copied.
- Return type:
IOMixin
- Returns:
: The de-serialized object.